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1 Introduction

1.1 Document Purpose
This document provides a detailed design description for the software-defined radio (SDR) based multiple-
input-multiple-output (MIMO) system. The purpose of this document is as follows:

(a) to provide a description of the project’s design methodology;

(b) to provide an explanation and justification for the changes and deviations from the originally planned
project, in reference to the Statement of Requirements (SOR), the Preliminary Design Specification
(PDS), and the Schedule Update;

(c) to present the details of the final project design;

(d) to present the testing and validation results of the project;

(e) to provide a summary of the degree of success of the project; and

(f) to provide suggestions and avenues for future project expansions.

1.2 Background
Multiple-input-multiple-output (MIMO) technology is a key component in both current and next generation
communications systems. Achieving space diversity through numerous antennas enhances performance and
efficiency when transferring data. Similarly, advances in digital electronics and increases in computing power
have rendered practical the use of software-defined radios (SDR) for applications that have been histori-
cally implemented in hardware. Merging these two technologies results in adaptive communications systems.
Known as cognitive radios, such systems can, depending on the state of the transmission medium, alter in
real time the transmission and reception schemes in the digital signal processing (DSP) chains to make the
most efficient use of the frequency spectrum while achieving the best possible performance. Software-defined
radios have brought cognitive radios closer to reality, as many of the signal processing components can be
realized and reprogrammed in software.

The motivation behind this project was to design and implement a 2x2 MIMO system to wirelessly
transmit data through two SDRs as a starting point to the greater concept that is the cognitive radio. This
project aims to explore the implementation of a functional system on the Universal Software Radio Periph-
eral (USRP) X310 using MATLAB’s Simulink environment.

The scope of this project is bounded to using the Alamouti orthogonal space time block code (OSTBC)
scheme along with two modulation schemes - quadrature and binary phase shift keying (Q/BPSK) - to
transmit a Joint Photographic Experts Group (JPEG) image over a wireless channel. The designed commu-
nication protocol is unique to this project and is not restricted to any industry standard.

1.3 Design Methodology
In the requirement design phase described in the Statement of Requirement (SOR) [1], each step of the trans-
mitter and receiver signal processing chains were listed as functional requirements, as all components require
functionality for the overall system to be operational. The interface and implementation requirements were
constrained by the SDR models that were readily available. The performance requirements such as the bit
error rate (BER) and spectral efficiency were selected based on an examination of modern communication
standards as outlined in the preliminary design specification (PDS) [2].
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The preliminary design phase consisted of developing and understanding of the various Simulink tools
and preexisting models for the SDR. As outlined in the PDS, the incremental model guided the project.
The application of this structure saw the creation and testing of various subsystems in virtual simulations,
after which each verified component would be integrated into an overall system to eventually be realized in
hardware. This process was repeated to incrementally develop the final design, as seen in Figure 1.1.

Requirements Design & Development
SISO

Testing
SISO

Implementation
SISO

Design & Development
MISO

Testing
MISO

Implementation
MISO

Design & Development
MIMO

Testing
MIMO

Implementation
MIMO

1

2

3

Figure 1.1: Design Method: Incremental Model

1.4 Hardware and Setup
To implement and test preliminary systems as well as the final design in hardware, two National Instrument
USRP X310 SDRs were used [3]. These devices were connected via 10-Gigabit Ethernet cables to two sep-
arate Windows 10 desktop computers (Figure 1.2). One SDR was used for the transmitter and the other
for the receiver, with each device connected to two Ettus Research VERT 2450 antennas. The separation
of the transmitting and receiving SDRs allowed for the respective Simulink models to compile and execute
relatively quickly, as opposed to running both signal processing chains on the same computer. The signal
processing chains were created in the MATLAB 2019b Simulink environment.

Figure 1.2: Hardware
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1.5 Approach
Simulink’s pre-existing single-input-single-output (1x1 SISO) USRP QPSK model was used as a starting
point to understanding the functioning of several key components of the transmitter and receiver modules.
Testing this system provided confirmation of the correct functioning of various Simulink sub-modules and
also presented a working realization of a complete signal processing chain, from which the more complex
systems could be built.

After exploring the 1x1 system, the 2x1 MISO system provided a method of incorporating the Alamouti
OSTBC scheme in an incremental fashion. Finally, the 2x2 MIMO system saw the addition of a second
receiver antenna. However, it was found that despite the value of the 1x1 QPSK model as a foundation,
the increased complexity and functionality from adding another transmitter antenna in a 2x1 system posed
various new challenges.

1.6 Obstacles
The 2x1 MISO phase of the project introduced new components in the signal processing chains that had
previously not been required in the 1x1 system. Specifically, the successful implementation of the Alamouti
orthogonal space time block code (OSTBC) decoding and preamble detection blocks was a considerable obsta-
cle, as these elements were integral to the proper recovery of the transmitted data. These blocks were tested
separately in simulations that were created in the Simulink environment. The realized solutions to these
difficulties will be detailed in their respective subsections in the design and simulation parts of this document.
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2 MIMO Design Architecture Overview
The final design is comprised of two modules: the transmitter signal processing chain and the receiver signal
processing chain. The transmitter module accepts a JPEG image, converts it to binary data, packages the
information for transmission over a wireless channel, and sends the data through the transmitting SDR.
The receiver module takes the signal obtained through the antenna, converts it to digital information, and
reconstructs the transmitted image. The overview of the system architecture can be seen in Figure 2.1.

Figure 2.1: System Architecture Overview

3 MIMO Transmitter Module Design

3.1 Transmitter Module Overview
The overall design of the transmitter module can be seen in Figure 3.1 below. The module involves an image
to bitstream converter, a Q/BPSK modulator, an Alamouti OSTBC encoder, a square root raised cosine
filter, and the USRP transmitter interface block.

Figure 3.1: Transmitter Module Overview

3.2 Image to Bitstream Conversion
The design focus of the transmitter signal processing chain is the image to bitstream converter, as the other
components in the module were available from Simulink’s toolbox. The first design decision that required
addressing was selecting the input image format to one that was suitable for data transmission. The JPEG
format input requirement, as specified in the SOR, was decided on for various reasons.

A JPEG image is a raster image, which means that the image data is stored in a matrix, with each
discrete value representing a pixel. This structure facilitates matrix manipulation of the image in MATLAB
and Simulink, as opposed to modifying a vector image. In addition, the ability to access an image’s data in
matrix form was useful for debugging during the testing and verification phases. The JPEG format is well
supported by the Windows operating system, as well as the MATLAB environment, which had pre-existing
tools and functions that were used to package the image data for transmission. This ease of integration
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removed the requirement to convert the input image to another data format before sending it through the
transmitter chain. Finally, JPEG is ubiquitous. It is a common file type, which provides flexibility while
keeping the overall system relevant to the standards of current technology.

Typically, any data that is to be wirelessly transmitted is packaged into a specific structure consisting of
groups of information bits called frames. Frames are comprised of information bits and a series of extra bits
called the preamble that is used to identify and distinguish each frame. The values of these extra bits are
dependent on the communication standard known to both the transmitter and the receiver.

The initial design approach was to transmit the entire image in a single frame, with one preamble at the
beginning. However, Simulink’s preamble detector, one component in the receiver module, was proven to
have an inconsistent output when receiving frames containing more than 100 000 bits. For perspective, a
480x480 8-bit JPEG image has over 5.5 million bits. This issue, shown in simulation and further detailed
in Section 5.1.3, resulted in the design decision of selecting a frame length that could be managed by the
receiver’s preamble detector.

To transmit images of varying dimensions, it was realized that the transmitted frame size should stay
constant. For instance, if the frame length was dependent on the width of the input image, the frame size
may exceed the experimentally determined limits imposed by the preamble detector. Therefore, by exper-
imenting with various frame lengths, it was decided to fix the data frame size to 40 000 bits. It should
be noted that this value, when divided by 8, results in an integer. This is important, as it signifies that
regardless of whether or not each transmission frame represents a row of the image, the frames will never
contain a fraction of an 8-bit RGB value. This data organization structure means that the number of trans-
mitted frames will differ depending on the size of the image. Lastly, the final data frame of an image will not
necessarily be 40 000 bits long unless the image dimensions are exactly divisible by 40 000, which is unlikely.
Therefore, the last frame will contain extra zero bits as padding, as Matlab can only manipulate rectangular
matrices.

When transmitting data over a non-ideal channel, bit errors, that is receiving a ‘0’ when a ‘1’ was trans-
mitted or vice versa, are expected. Knowing that not all pixel values of an image will be perfectly received,
it was decided to continuously transmit the image to add system robustness. This way, even if one part of
the image bit sequence experiences significant errors, there is a chance that the same sequence will not be as
severely affected during the next transmission cycle. Although only one instance of the image is extracted
from the total received bitstream, this module could be expanded on to best reconstruct the image using
multiple samples. However, cyclical transmission introduced the problem of determining the starting and
ending points of a cycle.

To resolve this issue, a preamble is appended to the beginning of each frame. This preamble is a 11-bit
unipolar Barker sequence. Unipolar Barker sequences are unique combinations of ones and zeros that pro-
duce high correlation values when autocorrelated. In other words, Barker codes are useful for finding other
instances of the same code in an overall bitstream. The preamble detector in the receiver module uses this
known Barker code to find the locations in the bitstream at which the code appears. The sequence is a digital
marker that identifies frames, which allows the receiver to gather the transmitted data and reconstruct the
image.

Intuitively, longer Barker codes have a lower probability of appearing in a sequence of data bits. To
provide a mathematical argument, the bits representing the image data will be modelled as independent
random variables, with the probability of receiving a 0 or 1 being equal. The binomial distribution can then
be used to calculate the probability of receiving a specific sequence of bits (3.1).
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P (x) =
n!

x!(n− x)!
px(1− p)n−x (3.1)

(Unipolar) Barker code 11 = 1 1 1 0 0 0 1 0 0 1 0 (3.2)

Considering Barker sequence 11 (line 3.3), the probability that 5 ones and 6 zeros are received is shown
below. This is the probability that ones and zeros will appear in the specific sequence of the length 11 Barker
code.

P (11) =
11!

11!(11− 11)!
0.511(1− 0.5)11−11 (3.3)

= 0.0004883

Similarly, the probability of a shorter length Barker code (line 3.4) appearing in the image bitstream is
shown below.

(Unipolar) Barker code 4 = 1 0 1 1 (3.4)

P (4) =
4!

4!(4− 4)!
0.54(1− 0.5)4−4 (3.5)

= 0.0625

The difference in the probabilities determined above justifies the use of longer Barker codes in the pream-
ble. The use of longer preambles lowers the data rate of a system, but the amount is negligible and is worth
the tradeoff if there is a much lower chance of accidentally detecting a Barker sequence in the data stream,
where there is not meant to be a preamble.

Simulink’s QPSK modulation and OSTBC encoding components require even-numbered input vectors.
After QPSK modulation, the frame size is halved, as each symbol represents two bits. Similarly, OSTBC also
decimates the frame size by 2, because one symbol is transmitted from each of the two antennas. Since using
longer Barker sequences is advantageous, it was decided to use Barker code 11 and append an extra bit 0 to
the end to force an even-lengthed sequence. The option to simply repeat the code twice was not possible, as
the overall frame had to be of an even length after going through both the modulator and OSTBC encoder,
which dictated that the quotient of the frame size when divided by 4 be an integer. It is important to note
that the addition of this extra bit does not affect the efficacy of the preamble detector at the receiver, as the
detector still searches for the length 11 Barker sequence. The extra bit is ignored, and only serves to meet
Simulink’s stringent array size requirements.

To reconstruct the image at the receiver, the receiver must know the input image’s dimensions. Therefore,
the image dimensions are appended to the start of the data frame in a location consistent to the unique
communication standard that was designed. It was decided to place the image dimension values one after
another, and appending extra zero bits to the end of the data to reach the standard frame size of 40 000
bits. This decision was made to accommodate any other image data that the user may wish to transmit.
Although not directly implemented into the final design, this functionality can be further developed.
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Figure 3.2 below illustrates the organization of the data bits and Barker sequences as detailed previously.
It represents the communication standard designed for the final system. The input image is selected in an
initialization Matlab script that has been programmed to run at the start of every Simulink run. This script
converts the input image into a bitstream before importing the data to the Simulink environment, where it
goes through the rest of the transmitter signal processing chain. The code can be found in the Appendix:
Design Code 1.

Figure 3.2: Transmitter Structure Bitmap

3.3 Modulation
After packaging the image data into a bitstream, the information must be modulated for over-the-air trans-
mission. In QPSK modulation, every two bits are represented by one symbol, whereas in BPSK, every
bit is represented by one symbol. Furthermore, for the QPSK modulator, it was decided to incorporate
Gray coding. This type of symbol representation, where adjacent symbols only change by a single bit, re-
duces the number of bit errors. For instance, if a certain symbol is received, but the demodulator makes
an error when identifying the received symbol, there is the greatest probability that an adjacent symbol
is selected. If Gray coding is used, although the symbol neighbouring the correct one was selected, there
is only a difference of one bit. In this case, there is one erroneous bit instead of possibly two, when Gray
code is not used. As such, the number of incorrectly received bits can be reduced by half. The modulation
constellations for both schemes are shown below (Figures 3.3 and 3.4). The preexisting Simulink modula-
tion components were integrated without difficulty. Since the scope of the project involves using both BPSK
and QPSK schemes, a virtual switch was integrated into the design to quickly change the modulation scheme.

Figure 3.3: QPSK Symbol Constellation Figure 3.4: BPSK Symbol Constellation

7



3.4 OSTBC Encoding
After the modulator, the outgoing signals are encoded in accordance to Alamouti’s OSTBC scheme. Multiple
versions of the same signal are transmitted from two spatially-separated antennas. Since the paths taken
by the signals from each antenna are affected differently by the channel, mathematically estimated values
of the attenuation and phase delay introduced by the channel can be used to reconstruct the transmitted
signal at the receiver. In Figure 3.5 below, the signals s1 and s2 are simultaneously transmitted at time t1,
after which mathematically altered versions of the signals −s∗2 and s∗1 are transmitted at the next sampling
instance t2. This separation or orthogonalization is illustrated in Table 3.1. The received signals, denoted
by variables r1, r2, r3, and r4 (Table 3.2), will be further explained in Section 4.3.

Figure 3.5: MIMO Antenna and Signal Configuration

Time Antenna 1 Antenna 2

t1 s1 s2
t2 −s∗2 s∗1

Table 3.1: Transmitted Signals

Time Antenna 1 Antenna 2

t1 r1 = h1s1 + h2s2 r3 = h3s1 + h4s2
t2 r2 = −h1s

∗
2 + h2s

∗
1 r4 = −h3s

∗
2 + h4s

∗
1

Table 3.2: Received Signals

Depending on the modulation scheme, the effect of the OSTBC encoder on each symbol will differ.
Changing the sign of a QPSK-modulated symbol represents a 180° rotation on the constellation map, and
taking the complex conjugate will simply reflect the symbol along the real axis. This is illustrated in Figure
3.3 below. For BPSK-modulated symbols, taking the complex conjugate will have no effect, and changing
the sign will still represent a 180° rotation on the constellation map (Figure 3.4).

The mathematical operations of OSTBC encoding [4] is conducted automatically by the Simulink com-
ponent. The received signals are further explained in Section 4.3.
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3.5 Transmission Interfacing
The raised cosine filter is inserted at the end of the transmitter signal processing chain to reduce inter-symbol
interference (ISR) [5]. This component is important for achieving a lower bit error rate. Finally, the USRP
transmitter sub-module conducts the interfacing between Simulink and the SDR and transmits the processed
waveforms through the antennas.

3.6 Transmitter Module Implementation

Figure 3.6: Transmitter Module Simulink Design

Figure 3.6 displays the full transmitter signal processing chain. The sequence and existence of each sub-
module was designed to be the most logical while achieving the best performance. The input switch from
the Bernoulli pilots to the image input in Figure 3.6 was implemented for ease of access between conducting
offline channel estimation and transmitting the image, which is explained in Subsection 4.3. The reshaping
(R) block between the input and modulator is required to organize the input image into an array with
dimensions compatible with Simulink. Finally, the switches surrounding the modulation types allow the
user to quickly change between QPSK and BPSK modulation schemes. The SDRu Transmitter is a module
through which Simulink interfaces with the SDRu using the IP address.
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4 MIMO Receiver Module Design

4.1 Receiver Module Overview
As seen in Figure 4.1 below, the receiver module consists of an automatic gain controller (AGC), a raised
cosine filter, an OSTBC decoder, frequency and symbol synchronizers, a preamble detector, a frame syn-
chronizer, an image converter, and finally a bit-error-rate (BER) calculator. The 1x1 USRP QPSK Simulink
model introduced many of the components required for the implementation of a receiver capable of receiv-
ing and decoding spaced-time coded signals. Although some sub-modules did not present any issues when
migrating from a 1x1 system to a 2x1 system, others required considerable alteration and tuning to be
integrated into the overall design.

Figure 4.1: Receiver Module Overview

4.2 Minor Sub-Components
The USRP interface sub-module, automatic gain controller, raised cosine filter, and QPSK demodulator
were integrated without difficulty. These blocks are independent of whether or not the received signals are
encoded, and their functionality had been tested using the 1x1 USRP QPSK model. After receiving the
signal from the USRP interface component, the automatic gain controller continuously adjusts the gain at
the receiver to stabilize the power of the received signals, and the raised cosine filter reduces inter-symbol
interference. Finally, demodulation occurs after the signals have been decoded. Therefore, the integration of
the demodulator sub-module is identical in both SISO and MISO/MIMO systems. These systems are minor
in the sense that their implementations presented few or no obstacles.

4.3 OSTBC Decoding
In order to decode the OSTBC signals at the receiver, an estimation of the channel must be conducted.
Channel estimation is a mathematical operation that combines the received signals to extract information
about the degree of interference, delay, and fading in the channel. These channel coefficients are required to
recover the transmitted signals. The following description of the method used to conduct OSTBC decoding
is a primary design component.

The approach used to estimate the channel was to transmit a sequence of pilot symbols, in this case a
stream of 1s, and compare the sequence to what is received after the signal travels through the channel. This
is shown in Table 4.1. The complex conjugate signals can be simplified, because all symbols lie on the real
axis when using BPSK modulation, and for QPSK modulation, the phase offset can be adjusted so that the
symbol representing a pair of 1s will lie on the real axis as well.
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Figure 4.2: QPSK Constellation: Binary and π
2 Phase Offset

Time Antenna 1 Antenna 2

t1 sp = 11 sp = 11
t2 −s∗p = −sp s∗p = sp

Table 4.1: Transmitted Signals: Binary and π
2 Phase Offset

Time Antenna 1 Antenna 2

t1 r1 = h1sp + h2sp r3 = h3sp + h4sp
t2 r2 = −h1sp + h2sp r4 = −h3sp + h4sp

Table 4.2: Received Signals: Binary and π
2 Phase Offset

In reference to Figure 3.5, the transmitted signals s1 and s2 will be affected by the channel parameters
h1, h2, h3, and h4. At this point, the receiver is unable to distinguish which signal originated from which
antenna, so the receiver only detects signals r1, r2, r3, and r4. However, the binary and π

2 phase offset
in the QPSK modulation scheme setting simplifies the computation of the channel parameters from the
received signals. The channel parameters, h1, h2 were retrieved by adding and subtracting signals r1 and
r2 respectively (Equations 4.5, 4.6). Similarly, the channel parameters, h3, h4 were retrieved by adding and
subtracting signals r3 and r4 respectively (Equations 4.3, 4.4). The parameter A is simply a gain factor to
normalize the channel estimation parameters to 1.

h1 = −A(−r1 + r2) (4.1)
h2 = A(r1 + r2) (4.2)
h3 = −A(−r3 + r4) (4.3)
h4 = A(r3 + r4) (4.4)

11



Once computed, the offline channel estimation parameters are used to decode the incoming signals in
accordance to Alamouti’s decoding scheme, which exists inherently in the Simulink OSTBC decoder com-
ponent. This process is shown below in lines 4.5 and 4.6.

ŝ1 = h∗
1r1 + h2r

∗
2 + h∗

3r3 + h4r
∗
4 (4.5)

ŝ2 = h∗
2r1 − h1r

∗
2 + h∗

4r3 − h3r
∗
4 (4.6)

Next, the maximum likelihood detector in the OSTBC decoder determines s1 and s2 by choosing the
constellation that is closest in distance to the decoded signals, ŝ1 and ŝ2. For instance, if the decoded symbol
is 0.9 + j0.9, the maximum likelihood detector would chose the received symbol to be 1 + j1. As long as
the decoded symbol is close enough to the transmitted symbol, the maximum likelihood detector is able to
correctly recover the symbol. For cases where the decoded symbol whose constellation is equal in distance
to two different possible coordinates, or is closer to an incorrect coordinate, it is inevitable that the receiver
will incorrectly recover the incoming signals. This highlights the importance of obtaining accurate channel
estimation parameters to ensure that the decoded symbols whose constellations are as close to their expected
locations, to minimize the bit-error rate.

Real-time channel estimation, which is a technique of continuously updating the channel estimation pa-
rameters as one of the inputs to the OSTBC decoder using the pilots in each frame, proved to be difficult to
implement. Real-time channel estimation provides a degree of system robustness, as the system can adapt
to abrupt changes in the channel, for instance due to the presence of an obstacle or atmospheric changes.
Through testing and simulation, it was realized that this active estimation heavily depends on the consistent
functionality of the preamble detector, which is usually placed before the OSTBC decoder in the receiver
chain. However, further testing revealed that detecting modulated and OSTBC encoded pilot symbols was
not a simple task that yielded consistent results. Moreover, such a responsive system using real-time channel
estimation is beyond the project scope, which is detailed in the SOR. Since the final design is to be demon-
strated in an indoor environment where the channel does not fluctuate significantly, it was decided to make
a trade-off between system robustness and complexity by foregoing real-time channel estimation.

The alternative to real-time channel estimation is to obtain the channel estimation parameters prior to
the transmission of the data. Known as offline channel estimation, this technique assumes that the channel
will stay relatively constant between the transmission of the pilot symbols and the data. To implement
such a system, the final design saw the placement of the preamble detector sub-module after the Alamouti
OSTBC decoder. This way, the inconsistencies of the detector would not affect the signal decoding, and
the data can progress through the rest of the processing chain. This deliberate arrangement of components
and the writing of the decoding functions were one of the main design efforts in the receiver module. The
channel estimation extraction functions can be found in the Appendix: Design Codes 3, 4, and 5. These
functions were modelled based on the mathematical theory detailed earlier in this subsection while incor-
porating adjustments for integration into the unique structure of the project. Testing of offline channel
estimation, detailed in Section 5.2, has shown that the constellations of the received signals converge at the
expected locations. This indicated that using the offline channel estimation technique was suitable, resolving
the difficulties of implementing real-time estimation.

The Alamouti OSTBC decoding sub-module is a critical component of the receiver module whose imple-
mentation proved to be nontrivial. As its functionality has a significant impact on the final design, it was
decided to test the component in a simulation environment as well as within a separate SDR module before
integration into the final system. The simulation results are presented in Section 5.2.
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4.4 Synchronization
The carrier frequency and symbol synchronizers presented various issues when attempting to integrate them
into a MIMO system. Initially, they were placed immediately after the AGC and raised cosine filter. How-
ever, it was discovered that these components are unable to correctly compensate for any frequency offsets
and timing errors when the incoming signals are OSTBC encoded. To resolve this problem, it was decided
to first decode the signals using the offline channel estimation parameters before feeding them through the
synchronization components.

The design approach to the implementation of a MIMO system on the SDR is to rely on the offline
channel estimation parameters to decode the incoming signals. The next component in the receiver chain is
the preamble detector. Although the preamble detector was not used to distinguish the pilots from the data
in each frame, it serves as a vital component in conjunction with the frame synchronizer as they organize the
decoded signals into their respective frames, in the same structure as how the data was transmitted. The
preamble detector and frame synchronizer are located just before the QPSK/BPSK demodulator because
the threshold setting in the preamble detector is only available when the input is a symbol.

Once the incoming signals have been correctly organized into their respective frames, the data is demod-
ulated using the QPSK/BPSK demodulator and the output is fed to the bitstream to image converter to
reconstruct the image based on the received bits.

4.5 Preamble Detection
Much like channel estimation, preamble detection was another implementation and testing challenge. The
preamble detector identifies the unique preamble located at the start of each data frame. In terms of this
project’s unique communication standard, the preamble detector must detect a 11-bit Barker sequence. The
preamble detector sub-module takes the incoming bitstream and correlates it with the known Barker code.
Since Barker codes are unique sequences that provide high autocorrelation, the detector identifies the loca-
tions in the bitstream where the autocorrelation peaks. This design’s convention places Barker code in the
preamble of each frame (see Subsection 3.2), so by locating the codes, the detector effectively identifies the
start of each frame.

The autocorrelations of Barker sequences 11 and 4 are shown below (Figures 4.3 and 4.4). The extra 0
bit appended to the end of the code was proved through testing to have no effect. Therefore, along with the
probability advantage that longer codes provide (see Subsection 3.2), they also result in higher autocorrela-
tion values when compared to smaller codes.

Figure 4.3: Barker Code 11 Autocorrelation Figure 4.4: Barker Code 4 Autocorrelation
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As shown in Figure 4.1, the preamble detector sub-module is followed by the frame synchronizer. The
index of the location of the preamble is one of the preamble detector’s outputs. This value acts as a con-
trol line that enables the frame synchronizer so that a given frame does not continue through the signal
processing chain if it is not identified to be a data frame. The detection threshold of the preamble must
be manually set. The only way to determine this value is through experimentation, and unfortunately, the
detector was found to be extremely sensitive to noise and interference. As such, it was difficult to precisely
find the threshold that would consistently locate the preambles in the expected locations. This was one of
the main issues that inhibited successful hardware implementation of the MIMO system.

4.6 Bitstream to Image Conversion
After the preamble detector identifies and distinguishes each data frame, the information is exported from
the Simulink environment to a Matlab script to be assembled, much like the initialization script. This code
also runs automatically after each Simulink run. The design of this module was dependent on the design of
the JPEG to bitstream converter detailed in Subsection 3.2 of the transmitter module section. The following
steps summarize the events in the script built for this module (see Appendix: Design Code 2). First, for
each frame, the first twelve bits that is the preamble are removed. This is under the assumption that the
preamble detector correctly detected the Barker sequences and passed through only the frames in which the
code was detected. Next, every received frame is appended to form one large matrix, whose rows represent
the frames. The first frame that is passed through by the frame synchronizer is known to contain the image
dimensions, so this data is extracted in order to reshape the data matrix into the dimensions corresponding
to the original image. Next, the data matrix is restructured into a matrix of eight columns, each row of which
corresponds to an 8-bit RGB value. Once the binary rows are converted into decimal values, the original
image is reassembled using the previously extracted image dimension values. The final product is displayed
using Matlab’s image processing toolbox.

4.7 Receiver Module Implementation

Figure 4.5: Receiver Module Simulink Design

The final Simulink receiver module shown in Figure 4.5 above contains a switch to quickly change between
the offline channel estimation and image signal processing chains. The AGC simply stabilizes the received
signals’ amplitudes, which ensures the accuracy of the carrier and symbol synchronizers. Figures 4.6 and 4.7
below show the receiver signal processing chain and performance calculator in greater detail.
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Figure 4.6: Receiver Signal Processing Simulink Design

The OSTBC decoding component is followed by carrier and symbol synchronizers, preamble detector,
frame synchronizer, and finally demodulation and image assembly sub-module. Carrier and symbol syn-
chronizers are two additionally required components for hardware implementation. This is due to the fact
that the carrier frequencies of the two SDRs are not perfectly matched. Although the OSTBC decoding
component equalizes the delay introduced by the channel, the symbol synchronizer acts as a secondary com-
pensation to ensure that the received symbols are sampled at the correct instants of time. At those instants
of time, the amplitudes of the symbols are at their peaks, which then allows easier decision making process
for the preamble detector and the demodulator.

Figure 4.7: Demodulation and BER Calculation Simulink Design

Similar to the MIMO transmitter (Subsection 3.6), a manual switch was integrated to quickly change
between the BPSK and QPSK demodulation schemes. The bit-rate rate is calculated using the Error Rate
Calculation component by comparing the bits of the received frame with those of the input frame.
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5 Simulation
This section details the simulations of the components most integral to the success of the final design.
These simulations were conducted to test and verify the independent functioning of these components before
integration into the overall system.

5.1 Preamble Detection Verification
The preamble detector is an important component in the receiver signal processing chain. It locates the
Barker code that is appended to the beginning of each frame (see Subsection 3.2), and allows the frame to
pass through if a Barker code is detected. Knowing the framing standard shared between the transmitter
and receiver, the frame synchronizer ensures that the receiver complete captures each frame.

5.1.1 Preamble Detection Pattern

To properly detect the preambles in the incoming signals at the receiver, the two parameters of the pream-
ble detector that must be adjusted are: the pattern to detect and the threshold. Both the preamble’s bit
sequence as well as the location of the detector relative to other components in the receiver chain dictate
these parameters.

For instance, since the final design uses a Barker code of length 11 with an extra bit 0 at the end, and
this preamble is to be detected before the QPSK demodulator at the receiver, the complex pattern that is
to be detected is shown below in line 5.1.

Barker Code Length 11 + ’0’ = 1 1 1 0 0 0 1 0 0 1 0 0 (5.1)

This Barker sequence is then QPSK-modulated to obtain the final preamble sequence for which the
detector searches. The complex values are shown in the display of Figure 5.1. There are six values, due to
the effect of QPSK modulation.

Figure 5.1: Preamble Pattern Simulink Computation

5.1.2 Preamble Detection with Small Frame Size

The output of the preamble detector is tested for consistency in Simunlink environment. The complex pattern
to detect was determined as per Figure 5.1 and the detection threshold was adjusted through experimentation.
In this simulation, the frame size was selected to be 100 bits long and consisted of the 12 bit-long Barker code
appended to 88 randomly generated bits. This frame is repeatedly sent over a MIMO Rician and Gaussian
noise channel, to simulate the slow, flat fading characteristics of a lab environment. The preamble detector
is used both at the transmitter and receiver, and the indices at which the Barker code is detected from both
detectors are compared. As seen in Figure 5.2, both preamble detectors were able to correctly locate the
preambles at index 6, which is precisely the point at which the QPSK-modulated length 12 Barker code ends.
The simulation demonstrates that the output of the preamble detector is accurate and consistent when the
length of a frame is relatively short.
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Figure 5.2: Preamble Detector Testing Schematic: Short Frame

5.1.3 Preamble Detection with Large Frame Size

The preamble detector no longer outputs indices with the same accuracy and consistency when the length
of the data frame is longer than approximately one hundred thousand bits. The result of the simulation is
shown in the display of Figure 5.3.

Figure 5.3: Preamble Detector Testing Schematic: Long Frame

At the transmitter, the preamble detector is able to detect the index 6, the point at which the Barker
code ends in the outgoing QPSK modulated signal. However, at the receiver, the output of the preamble
detector is inconsistent and outputs multiple indices. The output is heavily dependent on and is sensitive to
the detection threshold. For instance, the detector’s output will fluctuate when modifying up to the fourth
decimal place of the threshold value. Contrarily, shorter frame sizes cause the output of the preamble detector
to only be sensitive to changing a maximum of two decimal places. From the result of this simulation, it can
be inferred that the probability that a sequence of symbols in the received data would randomly match the
Barker code increases with the length of the data frame. As a result of the simulation, the frame size for
image transmission was designed be slightly less than half of this upper limit of one hundred thousand bits
to ensure a reliable preamble detector output.
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5.2 Channel Estimation Verification
The designed simulation schematic in Figure 5.4 creates a frame comprised 100 pilot bits (all 1s). This frame
is then modulated and transmitted through a MIMO Rician channel to simulate multi-path fading, as well
as a Gaussian noise channel to simulate attenuation from interference. These fading sub-modules serve as
an approximation of the final design’s real-world channel environment, where there is a direct line of sight
between the transmitter and receiver.

In a simulation environment, the carrier frequencies of the transmitter and receiver are perfectly matched;
therefore, there is no frequency offset in the received signals and no need for a frequency synchronizer. It
should also be noted that the MIMO Rician and Gaussian noise channels introduce insignificant levels of
delay as opposed to that of a real-world channel, and since the transmitter and receiver modules are built
in one Simulink file, the receiver can be made to sample the incoming signals at the correct time instants.

Knowing that the pilot symbols are all 1s, the decoding scheme is simplified (Table 4.1). The channel
estimation parameters are determined by adding and subtracting two consecutive samples of the received
signals, and applying a gain term of 1/2 (Equation 4.5). The samples of the channel estimation parameters
are verified for consistency, and the averages of the samples are taken as a measure to reduce the effect
of random fluctuations. The accuracy of the channel estimations parameters are then tested by switching
the input signal from the pilot symbols to sequences of randomly generated bits and observing the decoded
signal’s constellation.

Regardless of the ideal assumptions, the primary focus of this simulation is on obtaining stable channel
estimation parameters, using them to decode the incoming signals, and verifying the proper functioning of
the OSTBC decoding sub-module. This ensures that a proper equalization for the channel is taken into
consideration, and hence a lower bit-error rate once the decoded signals are demodulated. The code for the
MISO channel estimation, the MIMO channel estimation, and the averaging functions can be found in the
Appendix: Design Codes 3, 4, and 5, respectively.

Figure 5.4: Offline Channel Estimation Schematic
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The results of the simulation (Figure 5.5) indicate that the channel estimation was correctly performed.
The QPSK-modulated randomly generated bits can be seen in distinct, tight clusters in the constellation
map. Contrarily, the constellation of the unsuccessful channel estimation (Figure 5.6) shows how the QPSK
modulated data would be poorly recovered.

Figure 5.5: Successful Estimation Figure 5.6: Unsuccessful Estimation
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6 Hardware Results
In this project, hardware implementation refers to the creation of Simulink models that can run on the
software-defined-radios. With the SISO design completed and preamble detector verified, the Simulink mod-
els for the hardware implementation of the SISO configurations were built. Through testing, it was discovered
that the preamble detector posed challenges with the hardware implementation. Unfortunately, due to the
project deadlines, it was decided to forego achieving complete functionality of the SISO system to advance
to the MISO and MIMO systems. It was rationalized that if the difficulties with the preamble detector
could not be resolved in time, the final design’s implementation, testing, and analysis would be resorted to a
simulated environment. The pursuit and exploration of the more complex MISO and MIMO configurations
were deemed to be more valuable than perfecting a SISO system. This section details the results of testing
the SISO, MISO, and MIMO hardware systems, as well as analyzing the difficulties encountered in each
stage.

6.1 SISO
The SISO hardware implementation results did not align with the simulation results of Subsection 5.1. In
simulation, the preamble detector was able to correctly locate the Barker codes in the received bitstream and
properly extract each data frame. However, the hardware results show that the preamble detector performs
poorly in a real channel, which prevents the rest of the receiver signal processing chain from functioning as
intended.

Figure 6.1: Disabled BER Data Decoder

Regardless of the detection threshold, hardware testing showed that the index output of the preamble
detector would be either empty or variable. When the index output is empty, the enable signal to the BER
Data Decoder sub-module is inactive. As a result, the receiver is not able to collect any frames. From Figure
6.1, it is shown that the BER Data Decoder sub-module can only be activated by a valid signal from the
frame synchronizer, which only occurs when there is a stable index output from the preamble detector. Con-
sidering the other case, a variable index output implies that the received symbols are incorrectly organized
into frames. In this scenario, tests showed that less than half of the transmitted frames would be received,
and among the received frames, none of the frames would begin with the expected Barker code preamble.
This is shown in Figure 6.2, where the first 12 bits of the received frames do not reflect the length 12 Barker
code that was appended at the beginning of each frame before transmission. In this hardware system, the
preamble detector did not function as intended.

It is suspected that the preamble detector’s threshold setting is particularly sensitive in real-world envi-
ronments. Similar to the degradation in the detector’s performance when frame sizes are extremely large, the
changing, non-ideal nature of a real channel is thought to create instability in the output indices. Although
more tests were conducted involving the changing of numerous settings, no solution was realized.
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Figure 6.2: Received Frames

6.2 MISO/MIMO
When implementing multiple antenna configurations, channel estimation parameters are required to decode
the received signals. Without these, the subsequent components in the receiver signal processing chain sim-
ply cannot function. The successful obtaining of the channel estimation parameters presented the greatest
challenge in this project while having the most significant impact on the success of the final design, as it is
the first step in the receiver chain.

Hardware testing of both MISO and MIMO systems revealed that the results of offline channel estimation
were inconsistent between tests and between SDR devices. When using one SDR as both the transmitter
and receiver, successful offline channel estimation parameters were obtained for a single test (see Figure 6.3).
Analyzing the total 500 parameters that were estimated, it was found that the channel estimation values
h1 and h2 were consistent (only 20 samples are shown in Figure 6.3). When these these offline channel
estimation parameters were used to decode a randomly generated bitstream, the received signals’ constella-
tions converged to their expected QPSK-modulated coordinates. This is illustrated in Figure 6.4. Although
the clusters are not as tight and distinct as those in simulation, this is an expected result of a non-ideal
real-world channel.

Contrarily, when offline channel estimation was conducted using two separate SDRs as transmitter and
receiver or when it is conducted again using one single SDR at a different instant of time, the obtained
channel estimation parameters were no longer consistent and significantly fluctuated from one sample to
another (Figure 6.5). As a result, the constellation of the received signals did not converge to their expected
locations. Figure 6.6 shows that the constellation forms a diamond, indicating the presence of attenuation
and phase errors.

The inability to achieve consistent channel estimation parameters is believed to be a result of an under-
run error in the USRP X310 SDRs, specifically caused by buffer mismatches. Underruns are a phenomenon
where the receiver samples faster than the rate at which the transmitter produces bits. This would cause
the receiver to sample at time instants where data is not being transmitted. If the transmitter is sending
only 1s and the receiver is oversampling, it is not guaranteed that the receiver will only receive 1s due to
noise and interference in the channel. Consequently, channel estimation would fail in this case in which it is
expected that the pilot symbols are constant. This is supported by the fact that channel estimation using a
single SDR is also unsuccessful.
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Figure 6.3: Successful Channel Estimation Figure 6.4: Constellation of Correctly Decoded Sig-
nals

Figure 6.5: Unsuccessful Channel Estimation Figure 6.6: Constellation of Incorrectly Decoded Sig-
nals
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In addition to the characteristics of the SDR hardware, the high memory requirements of Simulink may
be a contributing factor to the channel estimation errors. Underruns may arise when the interfacing be-
tween the two hardware devices that is the computer and the SDR is imperfect, which can prevent the
computer from keeping up with the sampling rate of the SDR. It was also observed that there is a mismatch
in the sampling frequencies between the SDR hardware and the Simulink software. This is supported by
the significant degradation in system performance that is present when the master clock frequencies of the
SDRs are changed to other values supposedly supported by the X310 model. Modifying the master clock
frequencies had a drastic effect on the consistency of channel estimation and subsequent sub-modules in the
chain. Due to the inconsistent nature of the underrun errors and the possibility that they are inherent to
the SDR devices, it was difficult to accurately identify and correct them. If it is proven to be a hardware
fault, a possible solution would be to use a newer model SDR that supports buffer integrity. A solution to
a hardware to hardware interfacing problem may be to conduct most of the signal processing on the SDR
FPGAs to relieve the CPU workload. However, this solution is beyond the scope of this project.

Near the end of the project cycle, it was realized that solutions or workarounds to the preamble detection
threshold sensitivity and the channel estimation inconsistency would not be produced in time. Therefore, the
decision was made to shift the focus of the project to a simulation-based approach, and conduct testing and
analysis by transmitting an image through a virtual Rician additive white Gaussian noise (AWGN) channel.
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7 Performance Testing

Bit Error Rate
This section contains the results and analysis of the bit error performance parameter for all antenna config-
urations in simulation. The theoretical expectation is that the BPSK systems should perform the same as
the Gray-coded QPSK systems in terms of BER [6]. Assuming coherent reception, that is there is no phase
error in the received signal, the probability of bit error for BPSK is given by Equation 7.1.

P (e)BPSK = Q

(√
2Eb
N0

)
(7.1)

When Gray coding is used, as is the case in the final designs of all QPSK systems in this project, a QPSK
symbol error corresponds to one erroneous bit, and the probability of error between BPSK and QPSK are
identical (Equations 7.2, 7.3, and 7.4).

Pb =
1 (erroneous bit/symbol)

2 (bits/symbol)
(7.2)

P (e)QPSK = Q

(√
Es
N0

)
(7.3)

Es = 2 Eb

P (e)QPSK = Q

(√
2Eb
N0

)
(7.4)

To analyze the BER, the energy per bit to noise power spectral density ratio Eb

N0
was varied between 0

and 20 dB. The plots for the BPSK systems, QPSK systems, and the modulation comparison are shown in
Figures 7.1, 7.2, and 7.3 respectively.
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Figure 7.1: BPSK Systems BER Analysis
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Figure 7.2: QPSK Systems BER Analysis
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Figure 7.3: Q/BPSK BER Comparison

The BPSK and QPSK modulation schemes’ BER results reflect theoretical expectations. The bit error
rates for the MIMO and MISO systems stop at 16 and 18 dB respectively, because at higher Eb/N0 ratios,
the rates go to zero in the simulation. For the SISO and MIMO systems, the bit error rates of both
modulation schemes are nearly identical. In the MIMO systems, there is a small discrepancy, as the BER
of the QPSK system is higher, or worse, than that of the BPSK system when they should be identical. The
small differences can be attributed to the relatively small number of bits that were simulated to calculate
these values. This decision was made due to the unrealistic time consuming nature of running the simulations
for numerous Eb/N0 ratios with extremely high bit counts. The significance of these BER results will be
analyzed in conjunction with the image transmission simulation results found in Section 8 below.
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8 Simulation Results
The following simulation results show each of the SISO, MISO, and MIMO systems’ outputs resulting from a
480x720 pixel input image. This input image will be referred to as "Input 1," since some systems were tested
using other inputs. All systems were simulated through a Rician, additive-white-Gaussian-noise channel,
with constant Doppler and energy per bit to noise power spectral density ratios.

8.1 SISO

Figure 8.1: Input 1 BPSK SISO Result Figure 8.2: Input 1 QPSK SISO Result

From Figures 8.1 and 8.2, it is clear that the QPSK system performs better. According to theory outlined
in Section 7 and the subsequent BER testing results, there should not be any difference in the two modulation
schemes’ performance. However, in actuality, the threshold value in the BPSK system’s preamble detector
could not be fine tuned accurately enough to result in a performance similar to that of the QPSK chain.
The deficiency in the preamble detector was verified by observing the index values of the detector output in
real time during the simulation.

28



8.2 MISO

Figure 8.3: Input 1 BPSK MISO Result Figure 8.4: Input 1 QPSK MISO Result

From Figures 8.3 and 8.4, it is clear that the BPSK system performs better. Once again, there should
not be any difference in the two modulation schemes’ performance. Similar to the previous simulation, the
preamble detector is failing to identify the Barker code in every transmitted frame. Close examination of
the visual errors shows that the contours of the image exist, and it is simply the colours that are distorted.
Since JPEG images have a 3-bit colour depth, the distortion indicates that one or more of the three frames
corresponding to a single segment of the image are not received.

The BER plot of Figure 7.3 shows that the simulation performance of the BPSK and QPSK MISO sys-
tems should be identical. It can therefore be inferred that the majority of the errors seen in Figure 8.4 are
the result of an inconsistent preamble detector.

The most important result from the MISO system simulation is that the performance is much improved
from the SISO system in unchanging channel conditions. If the errors in the QPSK chain can be attributed
to the preamble detector, it is evident from observing the BPSK result that the bit-error-rate is much lower
in the MISO system. This finding illustrates the advantage of incorporating space-diverse systems.
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8.3 MIMO

Figure 8.5: Input 1 BPSK MIMO Result Figure 8.6: Input 1 QPSK MIMO Result

Figures 8.5 and 8.6 show that there is a slight discrepancy between the BPSK and QPSK systems. This
is expected and can be ignored, as previously indicated by the BER plot of Figure 7.3. Since the final design
is the MIMO system, more simulations were conducted to better test the robustness of the design.

Figures 8.7 and 8.8 are the outputs of a 960x1249 pixel image (Input 2), and Figures 8.9 and 8.10 are
the outputs of a 1080x1620 pixel image (Input 3). None of the settings in the MIMO system’s signal pro-
cessing chains were altered between inputs. This demonstrates the success of the final design in terms of its
adaptability to variable input sizes. Like the results of the Input 1 image, the Inputs 2 and 3 provided the
same expected result, with extremely low BER values across both modulation schemes.

After simulating all three SISO, MISO, and MIMO systems and observing the relative performance
improvements, another important benefit of space-diverse systems was realized. In a communication system,
increasing the modulation order independently of other settings results in lower system performance in a
non-ideal environment. This is because as the modulation order increases, the Euclidean distance between
symbols decreases, which causes the system to be more sensitive to noise and interference. The lowest
modulation order that can be implemented in communications systems is of order 2, achieved through
BPSK modulation. This signifies that to achieve a low BER value in SISO systems, the energy per bit
to noise power spectral density ratio must be extremely high (see Figure 7.3). In mobile systems, the
transmission power cannot be indefinitely increased, which implies a performance limit that such a system
can maximally achieve. However, by incorporating space diversity such as in MISO or MIMO systems, it is
possible to achieve low BER values at much lower Eb/N0 ratios. This indicates that such systems would be
advantageous in mobile platforms, where transmission power is limited.
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Figure 8.7: Input 2 BPSK MIMO Result Figure 8.8: Input 2 QPSK MIMO Result

Figure 8.9: Input 3 BPSK MIMO Result Figure 8.10: Input 3 QPSK MIMO Result
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9 Discussion
This section will provide a detailed analysis of the final design’s performance in relation to the requirements
listed in the Statement of Requirement [1]. Since the final design was the SDR hardware implementation of
a 2x2 MIMO system, the analysis of the requirements will consider only the final design.

Table 9.1 below examines all the functional results.

Index Requirement Description Result

1 Data Generation convert JPEG image to binary bitstream Met

2.a Modulation modulate signal using BPSK Met

2.b Modulation modulate signal using QPSK Met

3 Coding conduct Alamouti OSTBC coding Met

4 Transmission transmit signals on SDR Met

5 Reception receive signals on SDR Met

6 Recovery recover the transmitted signals Unclear

7 Decoding conduct Alamouti OSTBC decoding Not Met

8 Demodulation demodulate signal Not Met

9.a Display display transmitted and received images Not Met

9.b Display display BER Met

9.c Display display spectral efficiency Not Met

9.d Display display modulation scheme Met

Table 9.1: Summary of Functional Results

Functional requirements 1 to 4 were successfully met. The transmitter signal processing chain in its
entirety was successfully implemented on the USRP X310 SDR. After going through the channel, the signal
was able to be picked up by the receiving SDR. It was realized during this analysis that requirement 6 was
poorly defined in the SOR. It does not represent a distinct step in the signal processing chain and there-
fore has no significance. It will be ignored in this analysis. Requirement 7 is not met in the final design.
OSTBC decoding could not be conducted, as the channel estimation parameters could not be retrieved (see
Subsection 6.2). The failure to perform this step had a cascading result, leading to the inability to meet
requirements 8 and 9a. Requirements 9b and 9d were still met, as the BER display and modulation scheme
toggle are independent of the OSTBC decoding. Requirement 9c was not met, as it was not possible to
incorporate a spectral efficiency calculation sub-module in time. Although these requirements were not met
in the final hardware system, all factors with the exception of requirement 9c were successfully met in the
final simulation system, which serves as a replacement to the hardware design.
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Table 9.2 below examines the performance, interface, and implementation results.

Index Requirement Description Result

PR Performance Requirements

PR-1 Bit Error Rate transfer a 480x480 pixel image
with BER 1E-4

Unclear

PR-2 Spectral Efficiency achieve a spectral efficiency of 5.0
bits/s/Hz

Unclear

IR Interface Requirements

IR-1 Connections Connect SDRs via Ethernet Met

IR-2 Software Use MATLAB and Simulink
USRP Communications Toolbox
to interface SDRs

Met

ImpR Implementation Requirements

ImpR-1 SDR platform Use USRP SDRs for the hardware
implementation platform

Met

Table 9.2: Summary of Performance, Interface, and Implementation Results

Through this analysis, it was realized that the originally defined bit error rate performance requirement
was too vague to analyze. Both practicum and theory were learned throughout the project cycle, which
resulted in a much stronger understanding of the functioning of a general communications system. However,
when PR-1 was conceived, the requirement did not take into account the energy per bit to spectral noise
density ratio. The requirement of achieving a certain BER value is arbitrary without specifying the Eb/N0

ratio, so the result of this analysis is unclear.

As previously mentioned the spectral efficiency calculator module could not be created in time for the
analysis, so it is unknown whether the numerical specification was met. All the interface and implementation
requirements were satisfied.
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10 Conclusion
The purpose of this project was to design and implement a MIMO communications system using software
defined radios to wireless transmit an image. The objectives were to transmit an image, receive the image,
and assess the system’s performance. The incremental project model was used to develop the final design.
The design and development, testing, and implementation phases were conducted sequentially from the least
complex SISO system to the more complex MISO and MIMO systems. Before hardware implementation,
the most important components of the signal processing chains were verified in simulation. However, during
the final testing stage of the MIMO design, several of the key components in the receiver signal processing
chain presented implementation challenges.

One of these components was the offline channel estimator. Unlike in simulation, obtaining channel esti-
mation parameters was inconsistent and heavily dependent on the SDR. Due to the underrun errors present
in the USRP X310 SDRs, any calculated channel estimation parameters were unusable in decoding. As a
result, the rest of the receiver signal processing chain in the context of the overall design could not be tested
on hardware.

The other component that presented implementation challenges was the preamble detector. Although
the capabilities and limitations of this component were rigorously studied and tested in simulation before
integrating it into the final hardware design, the preamble detector could not be made to consistently locate
the Barker codes in each frame. As a result, the detector could not be integrated in the receiver signal
processing chain.

The unexpected behaviour of the offline channel estimation and preamble detector led to the decision
to implement the final design and assess its performance in simulation. Without any changes in the overall
design, Simulink models were used to transmit, receive, and successfully recover images. The only difference
between the hardware and simulation implementation was the substitution of the real-world channel by a
Rician, AWGN channel model. It is suspected that because of the absence of the hardware synchronization
error and the use of a virtual channel, the channel estimation and preamble detection were fully functional.

The implementation of the final design in simulation validated and supported the theory and engineering
decisions that were applied to the project. The specific data packaging standard that was designed was proven
to be responsive enough to transmit images of varying sizes. Additionally, the design decision to integrate
offline channel estimation as a replacement to real-time channel estimation was proven to be a viable solution
for this project. This approach in obtaining the channel parameters was found to be a simple but accurate
method of integrating Alamouti’s OSTBC scheme. With the successfully creation of simulation models, it
was possible to test and validate the theory behind space-diversity, as well as modulation theory, since two
different modulation schemes were integrated. The resultant bit-error-rate plots and sets of recovered im-
ages corresponded to both the theoretical expectations and the characteristics unique to the designed system.

Aside from the eventual inability to implement the final design in hardware, the simulation-based product
successfully met all requirements, with the exception of calculating the spectral efficiency parameter. In the
end, the transmitter and receiver signal processing chains were proved functional and the system displays
the received image.

Unfortunately, the limitations of the preamble detector and the hardware synchronization errors are un-
resolved. The preamble detector threshold’s extreme sensitivity is unclear, even when using a Barker code
with high autocorrelation. Perhaps either an adaptive threshold or a more robust system architecture would
be required to address this issue. Further testing of the USRP X310 SDRs is required to more comprehen-
sively understand the synchronization issues, which are present even when the motherboard clock frequency
and the transmission carrier frequencies are identical. If these two issues can be resolved, it is believed that
successful hardware implementation on the SDRs is possible.
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Through this project, various subsets of communications theory were explored and learned in detail. By
designing and implementing the final system on hardware and in simulation, the difficulties of implementing
a project for real-world use were realized. Based on the successful simulation results, the advantages of using
a multi-antenna configuration along with space-time coding were validated both visually with the images
and numerically with the bit-error-rate plots. In the future, this project can be expanded to incorporate
other space-time coding schemes and modulation techniques to accommodate more complex antenna con-
figurations. This is useful for the application of massive MIMO, truly adaptive modulation scheme systems,
and real-time channel estimation systems, which are necessary for variable channel environments.
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11 Appendix

Matlab Code

Design Code 1: jpeg2bitstream.m
1 %% JPEG to bitstream converter code
2

3 % This script converts a user inputted JPEG image into a bitstream
4 % according to the designed data structure standard.
5

6 % Insert JPEG file here:
7 jpg_img = double(imread('test_small ','jpg'));
8

9 % Memory initialization
10 rx_bitstream_qpsk = [];
11 rx_bitstream_bpsk = [];
12

13 if exist('rx_img.jpg', 'file')==2
14 delete('rx_img.jpg');
15 end
16

17 % Preamble initialization
18 my_barker_code = [1 1 1 0 0 0 1 0 0 1 0 0];
19 bc_len = length(my_barker_code);
20

21 img_rows = size(jpg_img ,1);
22 img_cols = size(jpg_img ,2);
23 img_depth = size(jpg_img ,3);
24

25 % 12 bits for image dimension data: this means maximum image dimension is
26 % 2^12 = 4096 pixels
27 bin_rows = de2bi(img_rows ,12); %binary
28 bin_cols = de2bi(img_cols ,12); %binary
29 bin_depth = de2bi(img_depth ,12); %binary
30

31 % Image manipulation
32 decimalstream = zeros(img_rows ,img_cols*img_depth);
33 decimalstream = reshape(jpg_img ,[img_rows ,img_cols*img_depth ]);
34 dec_col = reshape(decimalstream ',[],1); % each row of the image after one another
35 bit8_col = de2bi(dec_col);
36

37 % Pad data so it is divisible by 40k
38 N = 40e3; % number of data bits per frame
39 R = rem(size(bit8_col ,1)*size(bit8_col ,2),N);
40 fr_pad_size = (N-R)/8;
41 fr_pad = zeros(fr_pad_size ,8);
42 padded_mtrx = vertcat(bit8_col ,fr_pad);
43 bit1_col = reshape(padded_mtrx ', [], 1);
44

45 bit40k_mtrx = reshape(bit1_col ,N,[]) ';
46

47 % Add dimension data row
48 dim_data = horzcat(bin_rows ,bin_cols ,bin_depth);
49 dim_row = horzcat(dim_data ,zeros(1,N-length(dim_data)));
50 data_mtrx = vertcat(dim_row ,bit40k_mtrx);
51

52 % Add Barker codes to each frame
53 bc_pad = repelem(my_barker_code , size(data_mtrx ,1), [1]);
54 tx_mtrx = horzcat(bc_pad , data_mtrx);
55

56 % Create structure for Simulink access
57 input = struct;
58 input.signals = struct;
59 input.time = [];
60 input.signals.values = tx_mtrx;
61 input.signals.dimensions = size(tx_mtrx ,2);
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Design Code 2: bitstream2jpeg.m
1 %% Image Reconstruction Script
2

3 % This script takes the decoded and demodulated frames and reassembles the
4 % received image.
5

6 my_barker_code = [1 1 1 0 0 0 1 0 0 1 0 0];
7 bc_len = length(my_barker_code);
8

9 if ~isempty(rx_bitstream_qpsk)
10 rx_mtrx = squeeze(rx_bitstream_qpsk)';
11 elseif ~isempty(rx_bitstream_bpsk)
12 rx_mtrx = squeeze(rx_bitstream_bpsk)';
13 end
14

15 rx_mtrx = rx_mtrx(:,bc_len +1:end); % remove each frame 's Barker code
16

17 % Extract dimension data row
18 dim_data = rx_mtrx (1,:);
19 img_rows = bi2de(dim_data (1: bc_len));
20 img_cols = bi2de(dim_data(bc_len +1:2* bc_len));
21 img_depth = bi2de(dim_data (2* bc_len +1:3* bc_len));
22

23 % Remove dimension data row
24 rx_mtrx (1,:) = [];
25

26 % Cut off extra/repeated data
27 N = size(rx_mtrx ,2);
28 rx_mtrx = rx_mtrx (1: ceil(img_rows*img_cols*img_depth *8/N) ,:);
29

30 % Binary to decimal conversion
31 rx1_col = reshape(rx_mtrx ',[],1); % making a column vector of data
32 rx8_col = reshape(rx1_col ,8,[]);
33 rxde_col = bi2de(rx8_col ');
34

35 % Remove zero padding
36 R = rem(img_rows*img_cols*img_depth*8,N);
37 fr_pad_size = (N-R)/8;
38

39 data_col = rxde_col (1:end -fr_pad_size);
40

41 % Create image according to extracted dimensions
42 pre_img_mtrx = reshape(data_col , img_cols*img_depth , img_rows) ';
43 img_mtrx = reshape(pre_img_mtrx , img_rows , img_cols , img_depth);
44

45 img_mtrx = uint8(img_mtrx);
46 imwrite(img_mtrx ,'rx_img.jpg','jpg');
47 imshow(imread('rx_img.jpg','jpg'));
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Design Code 3: MISO_chEst.m
1 %% MISO Channel Estimation Calculation
2

3 % This function takes the pilots symbols after going through the channel
4 % and calculates the channel estimation parameters for a MISO system.
5

6 function y = fcn(u)
7

8 u1 = complex(zeros (25,1));
9 u2 = complex(zeros (25,1));

10 j = 1;
11 for i = 1:25
12 u1(i) = u(j);
13 u2(i) = u(j+1);
14 j = j + 2;
15 end
16

17 u_resized = [u1 ' ; u2 '];
18

19 h1=u_resized (1,:)+u_resized (2,:);
20 h2=-u_resized (1,:)+u_resized (2,:);
21 k1=.5;
22 k2=.5;
23

24 y=[ -k2*h2.' k1*h1.'];
25 end

Design Code 4: MIMO_chEst.m
1 %% MIMO Channel Estimation Calculation
2

3 % This function takes the pilots symbols after going through the channel
4 % and calculates the channel estimation parameters for a MIMO system.
5

6 function y = fcn(u)
7 u1 = u(:,1);
8 u2 = u(:,2);
9

10 u1 = reshape(u1 ,[2 ,25]);
11 u2 = reshape(u2 ,[2 ,25]);
12

13 v = vertcat(u1,u2);
14

15 h1 = v(1,:)+v(2,:);
16 h2 = -v(1,:)+v(2,:);
17 k = .5;
18

19 h3 = v(3,:)+v(4,:);
20 h4 = -v(3,:)+v(4,:);
21

22 y=[-k*h4.' k*h3.' -k*h2.' k*h1.'];
23 end

Design Code 5: chEst_avg.m
1 %% This function takes the average of the multiple channel estimation parameter samples
2

3 function y = fcn(u)
4 y = mean (u,1);
5 end
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