
Trilateration-Based Cooperative Localization for
Multi-Agent Systems During GNSS Degradation

Eric J. Kim
Department of Electrical and Computer Engineering

Queen’s University
Kingston, Canada

Abstract—This project explores a trilateration-based cooper-
ative localization strategy for multi-agent aerial systems under
noisy sensor and environmental conditions. For a given agent,
a cascaded Kalman filtering architecture integrates IMU mech-
anization with GNSS and cooperative state estimates obtained
from neighbouring agents. A decentralized consensus-based
proportional-derivative control law maintains formation in a
constant velocity state while accounting for estimation errors and
external disturbances such as wind gusts. The project showcases
through simulated experiments how the cooperative localization
system could be used in uncertain operating environments and
provides insight into the tradeoffs between sensor fidelity, filter
design, and swarm coordination.

I. INTRODUCTION

Unmanned aerial vehicle (UAV) swarms are emerging as
effective tools in applications ranging from search and rescue
operations and structure monitoring to environmental data
collection and defense. A key consideration in enabling multi-
agent autonomy is ensuring reliable and accurate localization,
particularly in GNSS-denied or GNSS-degraded environments.
Traditional localization methods relying solely on global nav-
igation satellite systems (GNSS) are vulnerable to signal
obstruction, multipath effects, and intentional jamming, while
strict dead-reckoning-based schemes fail to provide absolute
positioning. These considerations have therefore prompted
investigations into robust navigation techniques. This work
investigates a GNSS-aware cooperative localization method
that fuses inter-agent range measurements, inertial states,
and partial GNSS data through a cascaded Kalman filter-
ing framework. One of the more novel areas of research
involves cooperative localization, where agents share relative
measurements and fuse local information to improve overall
state estimation. This approach takes advantage of inter-agent
ranging, inertial measurements, and the idea of cooperative
filtering to infer absolute or relative positions even when
direct GNSS signals are unreliable. In this context, Kalman
filtering remains a core technique due to its well-established
theoretical and practical framework and suitability for sensor
fusion. Recent works have demonstrated various sensor fusion
strategies for cooperative localization. Xu et al. [10] proposed
a decentralized visual-inertial ultra-wideband (UWB) frame-
work enabling robust relative state estimation without exter-
nal infrastructure, achieving centimeter-level accuracy through
optimization-based fusion of camera, inertial measurement
unit (IMU), and UWB data. Guo et al. [2] introduced a

consensus-based approach using (UWB) range measurements
and odometry for cooperative localization, also emphasizing
infrastructure-free deployment while ensuring bounded estima-
tion errors even in the presence of noise and communication
disruptions. Han et al. [3] integrated relative localization with
formation control using distance and velocity measurements
under a leader–follower topology. Their method demonstrated
global convergence under persistent excitation, highlighting
the close relation between localization and formation control.
Other works, such as those by Nguyen et al. [5]–[8], explored
fusing UWB with vision or IMU sensors to achieve robust
pose estimation in dynamic environments.

These methods focus strictly on relative positioning, and
only mention GNSS as a comparative baseline or reject it
outright due to its limitations. On the contrary, this work pro-
poses a Kalman filter-based cooperative localization scheme
for multi-agent systems that mimics GNSS trilateration theory
by integrating relative distances to neighbouring agents. The
novelty lies in mimicking GNSS single-point positioning using
trilateration to neighbouring agents, while dynamically weight-
ing their GNSS states based on their current degradation status.
This allows an agent to use partially degraded or cooperative
GNSS data to correct its inertial state, without full reliance
on its own GNSS, therefore bridging the gap between GNSS-
based and GNSS-free cooperative localization. The approach
is designed for three dimensional aerial swarms and exploits
the geometric structure of multi-agent systems for cooperative
state estimation.

The structure of this report is as follows: Section II describes
the theoretical framework and implementation methodology.
Section III describes the simulation environment that was
created to test the cooperative localization method. Section IV
discusses simulation results under various GNSS degradation
scenarios. Finally, Section V concludes the report with key
insights and future research directions.

II. METHODOLOGY

A. Integrated Cooperative Solution

This work asssumes that each agent in the multi-agent
system contains both an INS and a GNSS receiver. There-
fore, during periods of GNSS signal degradation or complete
outage, agents can use either dead-reckoning or a coopera-
tive solution to localize themselves, while during periods of
reliable GNSS data, both the relatively more biased INS and

the relatively more noisy GNSS can be fused to mitigate their
respective downsides and provide an overall more accurate
position estimate.

The overall localization pipeline consists of three Kalman
filters:

1) a cooperative trilateration-based GNSS estimator
2) a fusion stage combining cooperative and local GNSS

measurements
3) a final integration stage with INS

This hierarchy is designed to isolate and progressively refine
state estimates based on the trustworthiness of each informa-
tion source. The corresponding cascaded Kalman filter solution
is illustrated in Figure 1.

Fig. 1. Block diagram of complete positioning solution

The process begins with the cooperative GNSS Kalman
Filter. This stage mimics GNSS single-point positioning (SPP),
using inter-agent range measurements and the GNSS-reported
positions of neighbours to trilaterate the target agent’s position.
The result is a cooperative state estimate, derived from external
sources rather than the agent’s own sensors. These estimates
may themselves originate from degraded GNSS data on neigh-
bouring agents, so downstream filters incorporate adaptive
weighting to account for varying data quality.

Next, this estimate is combined with the agent’s own
degraded or partial GNSS data in the External Position
Kalman Filter, which fuses both sources to produce a refined
global position estimate that incorporates both independent
and cooperative information. This stage provides positioning
robustness for the dual situations when the agent’s own GNSS
data is unreliable, or the neighbouring agents from which the
cooperative state is obtained experience GNSS degradation
themselves.

Finally, the output of this fusion is passed into the Inte-
gration Kalman Filter, which performs traditional INS/GNSS
fusion. This final stage integrates the external GNSS-derived
position with inertial navigation data from the agent’s IMU,
which undergoes mechanization. This full integration provides
a resilient and drift-limited integrated navigation solution,
robust to both temporary GNSS outages or noisy GNSS data,
as well as long-term drift in inertial measurements.

To facilitate examining the performance of the cooperative
stateing method, a baseline Kalman filter that integrated sim-
ulated IMU mechanized states with the agent’s own GNSS
states was also implemented. The estimated position and
velocity from this filter was used in certain parts of the
process to eliminate feedback errors arising from the open-
loop architecture of the system and preclude more involved
examinations into stability.

In addition, for this project, the multi-agent system was
modeled under constant velocity assumptions to better show-
case the cooperative localization technique in the more prac-
tical and useful scenario where the agents are collectively
moving instead of simply stationary.

B. Cooperative Trilateration

This section details the technique used to trilaterate the
position of agent i, which is based on the way GNSS mea-
surements are integrated to obtain a single-point-positioning
estimate. This approach adapts the single-point positioning
method used in GNSS, but replaces satellites with neighbour-
ing agents acting as relative range anchors.

In GNSS positioning, the receiver’s unknown position in
ECEF coordinates is determined using pseudorange mea-
surements. This model can be adopted so that the satellites
represent the neighbouring agents of an agent i, that is, agents
that are within a sensing range R, and the receiver represents
agent i itself. The true range rmi from agent i’s position
p ≡ (x, y, z) to the mth satellite at pm ≡ (xm, ym, zm), can
be expressed as:

rmi =
√
(x− xm)2 + (y − ym)2 + (z − zm)2 (1)

Then, the pseudorange ρ between satellite m and agent i can
be expressed as follows:

ρmi = ||p− pm|| (2)

In the context of this work, this pseudorange is assumed
to be obtained through UWB sensors relaying data through
a two-way-ranging (TWR) method. These relative distance
measurements are assumed to be subject to Gaussian noise,
and arrive synchronously from all neighbours within sensing
range.

For N agents, we obtain a system of nonlinear equations,
which we linearize using a first-order Taylor series expansion
around the current best estimate of agent i’s position pEST ≡
(xEST , yEST , zEST) to obtain ρmi , as previously described in
[4]. The estimated pseudorange ρmiEST

is:

ρmiEST
= ||pEST − pm|| (3)

And represent the system for N neighbouring agents can
be represented in matrix form:

δρi = ρmi − ρmiEST
(4)

=


δρ1i
δρ2i

...
δρNi

 =


11
EST

12
EST
...

1M
EST

 [
δx

]
= GδSρ (5)

where

1m
EST =

[(xEST − xm), (yEST − ym), (zEST − zm)]

||pEST − pm||
(6)

To calculate the cooperative velocity from neighbouring
agents, the system becomes:

δρi =



δρ1i
δρ2i

...
δρNi
δρ̇1i
δρ̇2i

...
δρ̇Ni


2N×1

=



11
EST 03×1

...
...

1N
EST 03×1

03×1 11
EST

...
...

03×1 1N
EST


2N×6

[
δx
δv

]
6×1

(7)
= HδS

Note that the velocity estimate is constrained only along
the line-of-sight (LOS) vectors between the agent and each
neighbour, which limits full 3D velocity observability when
LOS directions are poorly conditioned.

If N ≥ 4, that is, if there are at least four neighbouring
agents, the solution to the above equation is:

δŜ = (HTH)−1HT δz (8)

The position and velocity estimates can be improved by
applying this correction δŜ to the current estimate.

C. Kalman Filters

The Kalman filter is a recursive algorithm for estimating the
state of a dynamic system in the presence of noise. It operates
in two stages: a prediction step, which projects the current
state forward in time, and an update step, which corrects
this prediction using incoming measurements. The following
equations describe the general Kalman filter framework used
in each stage of the architecture. Specific modifications for
each of the three filters follow in subsequent sections.

The general system is often represented in a discrete-time
state-space form:

xk = Fk−1xk−1 +Gk−1wk−1 (9)
zk = Hkxk + ηk (10)

where:
• xk is the state vector at time step k.
• Fk−1 is the state transition matrix.

• Gk−1 is the noise coupling matrix.
• wk−1 is the system noise, assumed to be Gaussian with

covariance Qk.
• zk is the measurement vector.
• Hk is the observation matrix.
• ηk is the measurement noise, assumed to be Gaussian

with covariance Rk.
In the prediction step, the filter calculates the next state
estimate and its associated uncertainty:

x̂−
k = Φk−1x̂

+
k−1 (11)

P−
k = Φk−1P

+
k−1Φ

T
k−1 +Gk−1Qk−1G

T
k−1 (12)

where:
• x̂−

k is the predicted state.
• P−

k is the predicted covariance matrix.
• P+

k−1 is the estimated state covariance from the previous
step.

The update step then refines the prediction using the measure-
ment zk:

Kk−1 = P−
k HT

k (HkP
−
k HT

k +Rk)
−1 (13)

x̂+
k = x̂−

k +Kk(zk −Hkx̂
−
k) (14)

P+
k = (I −KkHk)P

−
k (15)

where:
• Kk−1 is the Kalman gain, which determines how much

weight is given to the new measurement.
• x̂+

k is the updated state estimate.
• P+

k is the updated error covariance.
This base framework was adapted for each of the three

Kalman filters described in Figure 1.

D. Cooperative GNSS Kalman Filter
The first Kalman filter in the system estimates a cor-

rection to agent i’s position and velocity using cooperative
pseudorange and Doppler-like range-rate measurements from
neighbouring agents.

We define the state vector as the position and velocity
errors, which are calculated as the difference between the
estimated position of agent i, and its trilaterated position from
the estimated and measured pseudoranges from agent i to each
of its neighbours.

X[k] =

[
δx[k]
δv[k]

]
∈ R6 (16)

The measurement vector zk is defined as δρi from Equation
7, and the state evolves under a constant velocity model:

X[k + 1] = FX[k] +w[k], (17)

F =

[
I3 ∆t · I3
03 I3

]
(18)

where wi[k] ∼ N (0,Q) is zero-mean process noise.
The measurement model relates the error state to the

pseudorange and relative velocity residuals using the matrix
H ∈ R2N×6, derived in the earlier linearization:

z[k] = H[k]Xi[k] + ε[k], ε[k] ∼ N (0,R) (19)

The measurement noise covariance matrix R ∈ R2N×2N

accounts for uncertainty in both the pseudorange and relative
velocity measurements. It is constructed adaptively at each
timestep based on the status of neighbouring agents. For each
neighbour j of agent i, the corresponding entries in R are
determined as follows:

• If agentj is currently in GNSS outage or blockage, large
constant noise values are assigned to both its position and
velocity components to reflect high uncertainty.

• Otherwise, the values are taken from the neighbour’s
known GNSS error characteristics, which is assumed to
be communicated to agent i.

The final matrix is diagonal and structured as:

R = diag
(
σ2

pos,1, . . . , σ
2
pos,N , σ2

vel,1, . . . , σ
2
vel,N

)
(20)

This design ensures that unreliable neighbours contribute
less to the update step, while reliable neighbours have greater
influence.

The process noise covariance matrix Q ∈ R6×6 encodes
uncertainty in the motion model, which assumes constant
velocity between timesteps. In this implementation, Q is
kept constant, with a tuning parameter kQ reflecting expected
deviations from the constant-velocity assumption.

Q = kQI6 (21)

Despite its simplicity, this formulation is effective in a
cooperative context where most of the positional information
comes from external agents rather than the motion model itself.

At each time step, the Kalman filter proceeds with the
standard prediction and update steps, after which the agent’s
position and velocity estimates are corrected using the esti-
mated error state:

pi ← pi + δx̂i (22)
vi ← vi + δv̂i (23)

The output of this filter is a refined estimate of agent i’s po-
sition and velocity, incorporating cooperative pseudorange and
Doppler-like measurements from neighbours. This cooperative
GNSS estimate is passed to the next stage of the architecture
for fusion with the agent’s own GNSS measurements.

E. External Position Kalman Filter

The second Kalman filter fuses agent i’s own GNSS mea-
surements with the cooperative GNSS estimate computed from
neighbouring agents. This integration stage provides a robust
position and velocity estimate that reduces noise when the
agent’s GNSS is unreliable, or when the cooperative state
is noisy. It as a reconciliation layer, resolving differences
between the agent’s own GNSS data and the cooperative
estimate, especially when either is degraded.

The state vector in this case is the position and velocity
errors between the estimated and measured states, which are
used to correct the agent’s own GNSS estimate. The state
transition matrix is defined identically to that of the first
filter through Equation 18. Correspondingly, the measurement

model is constructed from the discrepancy between the internal
GNSS state and the external cooperative estimate.

The measurement noise covariance R[k] ∈ R6×6 is adap-
tively estimated at each time step based on the GNSS status of
neighbouring agents contributing to the cooperative estimate:

R[k] = σ2
collab[k] · I6, (24)

where σ2
collab[k] is computed as the mean of the GNSS noise

variances among neighbours.
Once again, the process noise covariance Q ∈ R6×6 is

fixed and tuned through a scalar gain kQ, as was shown in
Equation 21. Finally, each epoch proceeds with the standard
Kalman prediction and update steps, after which the updated
state is then used to correct the agent’s state obtained through
its GNSS data, all in open-loop fashion.

This formulation ensures that high-confidence cooperative
updates influence the agent’s GNSS-based estimate while
suppressing unreliable corrections in cases of neighbour degra-
dation or outage. Also, as with the previous filter, the update
operates in open-loop. The corrected state is not fed back to
upstream filters but passed forward for integration.

F. Integration Kalman Filter

The last Kalman filter combines agent i’s INS-estimated po-
sition and velocity with the external position estimate, obtained
by correcting the agent’s GNSS data with the output of the
second Kalman filter. This stage allows the system to function
in the event that both the GNSS and cooperative GNSS-
derived states are unreliable, thereby reducing the position and
velocity estimation to a dead-reckoning system based on IMU
mechanization. The output of this filter forms the final position
and velocity estimate used for performance evaluation.

This filter is modelled nearly identically to the previously
detailed external position filter, with differently tuned gain
constants. However, the measurement covariance matrix R
was taken to be the running variance of the last M measure-
ments of the external position and velocity estimates:

R[k] = diag
(
σ2
x[k−M :k], σ2

y[k−M :k], σ2
z [k−M :k],

σ2
vx [k−M :k], σ2

vy [k−M :k], σ2
vz [k−M :k]

)
III. SIMULATION

To examine the performance of the proposed cooperative
localization method, a multi-agent simulation environment was
built with various stochastic elements.

A. Dynamics and Sensors

First, the truth states, position p and velocity v of a given
agent, are computed using a simple double integrator model:

v̇ = u(t)

ṗ = v

As the scope of this project is to examine cooperative
localization, the simulation of GNSS data and IMU mech-
anization were bypassed using this truth state. To obtain

simulated GNSS position and velocity measurements, zero
mean Gaussian noise with standard deviations σGNSSp and
σGNSSv were added to the truth states. It must be noted that
GNSS measurements are assumed to be in the same global
frame as the truth states. Using this model, GNSS blockages
were simulated by multiplying the noise standard deviations
by an outage multiplier, and outages were simulated through
an internal boolean flag that forced the system to carry forward
the last known GNSS position.

pGNSS = ptruth +N (0, σ2
GNSSp

) (25)

vGNSS = vtruth +N (0, σ2
GNSSv

) (26)

Similarly, the IMU and subsequent mechanization process
were also not explicitly simulated. Instead, the INS was
initialized with the truth states, after which it evolved through
the same double integrator model described previously. To
simulate drift and noise, zero mean Gaussian noise sampled at
every timestep and an accumulating bias term b(t) were added
to the control input u (at the acceleration level) as the velocity
term underwent integration.

aIMU = b(t) +N (0, σ2
IMU) (27)

During the trilateration process, the relative distance mea-
surements between agents must be simulated. However, to
ensure a more realistic scenario and more appropriately assess
the performance of the cooperative localization method, zero-
mean Gaussian noise was added to the true position and
velocity states at every timestep:

pcoop = ptruth +N (0, σ2
coop) (28)

vcoop = vtruth +N (0, (0.1σcoop)
2) (29)

B. Environmental Stochasticity

In addition to the sensor data, randomness was also added
to the environment in the form of acceleration jitter and
wind gusts. To simulate small-scale randomness, a zero mean
Gaussian variable with a constant standard deviation was
also sampled at every timestep and added to the control
input. In addition, a simulated wind gust mechanism added
an exponentially-decaying three-dimensional gust force g(t)
to the control input, which is illustrated in Figure 2. At every
discrete simulation time, a uniform distribution was sampled
such that there would be a probability pg that a gust would
be generated. The gust’s magnitude a0 and duration T were
also sampled from uniform distributions based on maximum
values.

g(t) = a0e
−t/τ (30)

τ = T/ln(100) (31)

Gust forces are added to the agent’s control input, affecting
the truth trajectory but not directly modifying sensor outputs.
These mechanisms further disrupted the position of each agent,
bringing the simulation closer to reality.

Fig. 2. Sample of Gust with Maximum Magnitude of 3.0 m/s2 and
Maximum Duration of 5.0 s

C. Control Law

To prevent agents from accelerating indefinitely due to
accumulating drift and stochastic gust forces, a decentralized,
consensus-based control input was applied in the form of
a proportional-derivative (PD) formation controller with an
additional velocity-tracking term. The control input ui for
agent i at time t is computed based on the relative position ep
and velocity ed errors with respect to its neighbours j ∈ Ni,
as well as a desired global velocity error ev:

uk = − 1

Ni

∑
j∈Ni

[Kpep +Kded]−Kvev (32)

ep = (pi − pj)− (p0i − p0j) (33)

ed = vi − vj (34)
ev = vi − vd (35)

Here, pi and vi denote the estimated position and velocity
of agent i at the current time, and p0i is the initial position.
The set Ni contains the neighbours of agent i as determined
by the adjacency matrix (a function of the maximum sensing
distance), and Ni is the number of neighbours. The gains
Kp, Kd, and Kv are tunable parameters corresponding to
position correction, velocity damping, and velocity tracking,
respectively. In short, ep aims to set the relative distance
between an agent and its neighbours equal to the initial
distance for formation preservation, ed works to set relative
velocities equal to zero for swarm cohesion, and ev exists
so the entire swarm is moving through space at a constant
velocity to satisfy the constant-velocity model used in the
Kalman filters.

In implementation, the controller uses state estimates rather
than ground truth data, under the rationale that true states are
not observable in reality. During the simulation, the control
law uses the solution from a “benchmark” Kalman filter that
integrates simulated IMU measurements with simulated GNSS
data. Although using the output of the final integrated solution
seems like the more applicable choice, the benchmark filter’s

output was used to prevent instability caused by large initial
estimation errors, as well as potential regions of instability in
the overall system. Lastly, all neighbors are weighted equally
in the control input, and neither proximity nor trust weighting
is applied.

D. Simulation Process

During initialization of the swarm simulation, the global and
relative positions of agents are randomly set so that for any
given pair of agents, they exist within a maximum sensor range
of each other, ensuring global initial connectivity. In the case
of this project, where connections between agents are assumed
to be bidirectional and therefore undirected, this initialization
method represents the strongly connected case.

The complete formulation of the simulation environment is
provided in pseudocode.

Algorithm 1 Simulation Routine
1: Generate initial positions for N agents with spacing

constraints
2: Initialize each agent with IMU, GNSS, drift, outages,

blockages, and Kalman filters
3: for t from t0 to tf with step ∆t do
4: Compute adjacency matrix A based on agent positions
5: for each agent i do
6: Sample random jitter
7: Sample random gust
8: Compute control input using neighbour estimates
9: Update truth state

10: Update IMU and GNSS measurements
11: Update all Kalman filters:
12: Benchmark: IMU and GNSS
13: Cooperative: Trilaterated state estimate
14: External: GNSS and cooperative state
15: Integrated: IMU and external output
16: Save states for plotting and analysis
17: end for
18: end for

IV. RESULTS AND DISCUSSION

A. Simulation Setup

For the following 5-agent simulation, the amount of noise
and bias in the simulated IMU-mechanized position and
velocity states were set to be analogous to using a low-
cost Murata SCC1300-D04 IMU [1]. The accelerometer root-
mean squared (RMS) noise and offset errors of 5mg and
70mg respectively were converted to standard deviations for
a zero-mean Gaussian random variable of 0.05m/s2 and
0.70m/s2. The offset was interpreted as a constant bias term
in acceleration, contributing directly to long-term IMU drift.

The values for GNSS position and velocity noise were ob-
tained from the specifications of NovaTel’s OEM7500 GNSS
receiver module [9], which has a single point L1 band RMS
value of 1.5m and a velocity accuracy of less than 0.03m/s
RMS. These values have been translated to position and

velocity standard deviations (for a zero-mean Gaussian random
variable), of 1.5m and 0.1m/s respectively.

For the stochastic environmental noise, the acceleration jitter
was set to have a standard deviation of 0.005m/s2, and gusts
had a maximum amplitude of 3.0m/s2, with a per-timestep
probability of 5.0% and a maximum duration of 5.0s.

The results in this section use a target velocity vd in x, y, z
coordinates of (2.0, 1.0, 0.1) m/s, where one agent i = 0
underwent a GNSS blockage between 10 and 30 seconds with
an outage multiplier of 10, and a complete GNSS outage from
40 to 50 seconds. Furthermore, to allow filter convergence,
simulation data was collected after a 60-second warm-up
period.

B. Simulation Data

Figure 3 shows how the simulated IMU-mechanized posi-
tion estimate diverges from the truth state due to an accumu-
lating bias and acceleration noise.

Fig. 3. Simulated IMU-Mechanized Position

Figure 4 illustrates how during blockages, the GNSS noise
increases by an order of magnitude, and during outages, the
GNSS output simply uses the last observed state.

Figure 5 shows how the simulated cooperative localization
technique results in a position estimate that closely tracks
the truth state, albeit with a noise that is proportional to the
zero-mean Gaussian noise injected into the simulated relative
distance measurements used for trilateration.

Figure 6 indicates how the external state Kalman filter,
which integrates an agent’s own GNSS with the cooperative
state estimate, closely tracks the latter during periods of re-
duced GNSS quality. Although the figure may seem redundant
in comparison with Figure 5, the external state filter exists to
provide a stable external reference position and velocity during
periods of both high and low-fidelity GNSS measurements.
Along a similar line of reasoning, it can be expected that
when agents have high quality GNSS data, the benchmark
Kalman filter integration of simply the IMU and the GNSS

Fig. 4. Simulated GNSS Position

Fig. 5. Cooperative Kalman Filter Position

will perform better than the cooperative localization technique,
which is subject to noise

Figure 7 represents the result of the corrections obtained
from the benchmark Kalman filter, which integrates mech-
anized IMU with GNSS. The plots make clear how during
outages, the open-loop filter has no choice but to rely solely on
the mechanized IMU state, which increasingly diverges as the
outage prolongs. Furthermore, there is a nonsignificant amount
of noise in the position estimates, which arise from the GNSS
measurements.

Figure 8 shows the estimated position after being corrected
with the output of the final-stage integrated Kalman filter. The
position more closely tracks the truth state when compared
to Figure 7, which is expected, since the estimate here is
based on the cooperative localization output in addition to the
IMU mechanization and GNSS measurements. Quantitatively,
the 3D RMS position error for both the benchmark and final
trajectories were 1.27m and 0.920m respectively. As a result,

Fig. 6. External Kalman Filter Position

Fig. 7. Benchmark Kalman Filter Position

there is less noise during GNSS blockages, and the divergence
in the case of outages is absent.

To better illustrate the difference in positioning perfor-
mance, Figures 9 and 10 provide the magnitudes of the
position errors for both the benchmark and final cases, where
the state estimates are subtracted from the truth states.

The discrepancy in the filters’ performances is attributed
to the fact that the Doppler-based velocity estimation in the
cooperative localization filter only measures the component
of the agent’s velocity along each neighbour’s line-of-sight.
This results in persistent 3D velocity errors in directions that
are poorly aligned with the LOS vectors of the neighbours,
reducing the effectiveness of the cooperation technique relative
to simply using the agent’s own velocity, even if noisy.

C. Network Size

To observe the effect of increasing the network size N , a
new range of simulations were run with the same parameters as

Fig. 8. Integrated Kalman Filter Position

Fig. 9. Error Comparison of Benchmark and Final Kalman Filter Positions

detailed in Section IV-A, but with an additional GNSS outage
for agent 1 between 30 and 40 seconds. Table I summarizes
the results relative to agent 0’s state estimates.

Although the swarm’s formation was randomized between
the simulations of different swarm sizes, the network remained
strongly connected, meaning that agent 0, which suffered
GNSS blockages and outages as described previously, always
remained connected to agent 1, which lost its GNSS for
10 seconds. Therefore, since agent 1’s degraded GNSS was
always included in the trilateration calculations, the results
are comparable.

With only five agents, the final Kalman filter’s corrective
output diverges after agent 1’s outage, with an RMS position
error of 8.1m compared to 0.82m once the network size
increases to six, as there are fewer than four neighbours
available to agent 0. This prevents a full trilateration solution
from being computed through the Kalman filter’s update step.
As soon as the number of agents increases to six, the position

Fig. 10. Error Comparison of Benchmark and Final Kalman Filter Velocities

Metric Benchmark Final
N = 5

Position 1.3 8.1
Velocity 0.36 1.2

N = 6

Position 1.6 0.82
Velocity 0.35 0.91

N = 7

Position 1.5 0.82
Velocity 0.37 0.86

N = 8

Position 1.9 0.78
Velocity 0.38 0.92

TABLE I
3D RMS ERROR (m,m/s) FOR VARYING NETWORK SIZE

estimate of the final filter drastically improves, with the RMS
error falling below that of the benchmark (IMU and GNSS)
estimation. This improvement occurs because the trilateration
filter requires at least four independent neighbours for full 3D
localization. With only five agents, agent 0 cannot maintain
four neighbours during agent 1’s outage. In the end, the pattern
of improved states holds as the number of agents continues
to increase. Interestingly, velocity error remains relatively
constant across increasing network sizes, further supporting
the conclusion that cooperative Doppler-based velocity estima-
tion is limited by geometry, and not necessarily agent count.
Regardless, these results confirm that larger networks would
be more resilient to cross-agent GNSS outages.

V. CONCLUSION

This project explored a trilateration-based cooperative local-
ization framework for multi-agent UAV systems operating in
GNSS-degraded environments. The approach integrates inter-
agent pseudorange and relative velocity measurements with
each agent’s own inertial and GNSS data using a cascaded

Kalman filter architecture. Simulation results demonstrate that
this fusion scheme can improve position estimation accuracy
during periods of GNSS outages or blockages, given that the
agent remains connected to at least four neighbours. Moreover,
the system shows resilience to sensor noise and environmental
disturbances, enabled by a decentralized consensus-based PD
controller that maintains formation under constant-velocity
motion.

While cooperative localization improves position estima-
tion, velocity estimates remain limited due to the geometric na-
ture of range-rate measurements, which only constrain motion
along the line-of-sight to neighbouring agents. Consequently,
velocity errors persist in directions that are poorly aligned with
the swarm’s sensing topology.

In future work, the control law could be extended using a
weighted consensus approach, where each agent changes the
influence of its neighbours based on estimated localization
uncertainty or GNSS quality. This would enhance swarm
robustness in cross agent degradation scenarios and allow
the system to selectively prioritize reliable neighbours during
outage periods. Integrating trust weighting into the control law
would also reduce the influence of compromised agents on the
overall formation.

In addition, the stability of the cascaded Kalman filter
structure used in this project should be analyzed formally.
While each filter stage is designed to be individually stable, the
open-loop architecture (where downstream filters depend on
upstream outputs) introduces the potential for the amplification
of errors.

One major assumption made in this project is the syn-
chronicity of the relative position and GNSS data from
neighbouring agents. While GNSS single-point positioning
relies on accurate satellite clocks and bias correction terms,
such mitigations would typically not be available on small,
mobile platforms such as unmanned aerial systems. However,
effective synchronicity could be assumed if the agents are
moving slowly enough relative to the broadcast rate. In any
case, an area of further exploration would be to loosen the
synchronicity condition and consider messaging time delays
between agents, as well as the communication overhead.

Overall, this work demonstrates a resilient GNSS-
cooperative localization system that leverages trilateration and
filtering to maintain performance in degraded environments,
while identifying key limitations and future extensions needed
for deployment in larger, more realistic swarm settings.

REFERENCES

[1] SCC1300-D04—Gyro Sensors—Sensors—Murata
Manufacturing Co., Ltd. — murata.com.
https://www.murata.com/products/productdetail?partno=SCC1300-D04.

[2] Kexin Guo, Xiuxian Li, and Lihua Xie. Ultra-Wideband and Odometry-
Based Cooperative Relative Localization With Application to Multi-UAV
Formation Control. IEEE Transactions on Cybernetics, 50(6):2590–
2603, June 2020.

[3] Zhimin Han, Kexin Guo, Lihua Xie, and Zhiyun Lin. Integrated
Relative Localization and Leader–Follower Formation Control. IEEE
Transactions on Automatic Control, 64(1):20–34, January 2019.

[4] Eric J. Kim. Cisc839 project 2 gps single point positioning, 2025.

[5] Thien Hoang Nguyen, Thien-Minh Nguyen, and Lihua Xie. Range-
Focused Fusion of Camera-IMU-UWB for Accurate and Drift-Reduced
Localization. IEEE Robotics and Automation Letters, 6(2):1678–1685,
April 2021.

[6] Thien-Minh Nguyen, Abdul Hanif Zaini, Chen Wang, Kexin Guo, and
Lihua Xie. Robust Target-Relative Localization with Ultra-Wideband
Ranging and Communication. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 2312–2319, May 2018.
ISSN: 2577-087X.

[7] Thien-Minh Nguyen, Thien Hoang Nguyen, Muqing Cao, Zhirong Qiu,
and Lihua Xie. Integrated UWB-Vision Approach for Autonomous
Docking of UAVs in GPS-denied Environments. In 2019 International
Conference on Robotics and Automation (ICRA), pages 9603–9609, May
2019. ISSN: 2577-087X.

[8] Thien-Minh Nguyen, Zhirong Qiu, Thien Hoang Nguyen, Muqing Cao,
and Lihua Xie. Distance-Based Cooperative Relative Localization for
Leader-Following Control of MAVs. IEEE Robotics and Automation
Letters, 4(4):3641–3648, October 2019.

[9] NovAtel Inc. Oem7500 series gnss receiver modules.
https://www.novatel.com/products/gnss-receivers/oem-receiver-
boards/oem7500/, 2021.

[10] Hao Xu, Luqi Wang, Yichen Zhang, Kejie Qiu, and Shaojie Shen.
Decentralized Visual-Inertial-UWB Fusion for Relative State Estimation
of Aerial Swarm. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 8776–8782, May 2020. ISSN: 2577-
087X.

